Multi-Objective Accelerated Process Optimization of Part Geometric Accuracy in Additive Manufacturing
نویسندگان
چکیده
The goal of this work is to minimize geometric inaccuracies in parts printed using a fused filament fabrication (FFF) additive manufacturing (AM) process by optimizing the process parameters settings. This is a challenging proposition, because it is often difficult to satisfy the various specified geometric accuracy requirements by using the process parameters as the controlling factor. To overcome this challenge, the objective of this work is to develop and apply a multi-objective optimization approach to find the process parameters minimizing the overall geometric inaccuracies by balancing multiple requirements. The central hypothesis is that formulating such a multi-objective optimization problem as a series of simpler single-objective problems leads to optimal process conditions minimizing the overall geometric inaccuracy of AM parts with fewer trials compared to the traditional design of experiments (DOE) approaches. The proposed multi-objective accelerated process optimization (m-APO) method accelerates the optimization process by jointly solving the subproblems in a systematic manner. The m-APO maps and scales experimental data from previous subproblems to guide remaining subproblems that improve the solutions while reducing the number of experiments required. The presented hypothesis is tested with experimental data from the FFF AM process; the m-APO reduces the number of FFF trials by 20% for obtaining parts with the least geometric inaccuracies compared to full factorial DOE method. Furthermore, a series of studies conducted on synthetic responses affirmed the effectiveness of the proposed mAPO approach in more challenging scenarios evocative of large and nonconvex objective spaces. This outcome directly leads to minimization of expensive experimental trials in AM. [DOI: 10.1115/1.4037319]
منابع مشابه
Optimization of Dimensional Deviations in Wax Patterns for Investment Casting
Investment casting is a versatile manufacturing process to produce high quality parts with high dimensional accuracy. The process begins with the manufacture of wax patterns. The dimensional accuracy of the model affects the quality of the finished part. The present study investigated the control and optimization of dimensional deviations in wax patterns. A mold for an H-shaped wax pattern was ...
متن کاملMULTI-OBJECTIVE ROUTING AND SCHEDULING IN FLEXIBLE MANUFACTURING SYSTEMS UNDER UNCERTAINTY
The efficiency of transportation system management plays an important role in the planning and operation efficiency of flexible manufacturing systems. Automated Guided Vehicles (AGV) are part of diversified and advanced techniques in the field of material transportation which have many applications today and act as an intermediary between operating and storage equipment and are routed and contr...
متن کاملDynamic cellular manufacturing system considering machine failure and workload balance
Machines are a key element in the production system and their failure causes irreparable effects in terms of cost and time. In this paper, a new multi-objective mathematical model for dynamic cellular manufacturing system (DCMS) is provided with consideration of machine reliability and alternative process routes. In this dynamic model, we attempt to resolve the problem of integrated family (par...
متن کاملA Novel Optimization Approach Applied to Multi-Pass Turning Process
Optimization of turning process is a non-linear optimization with constrains and it is difficult for the conventional optimization algorithms to solve this problem. The purpose of present study is to demonstrate the potential of Imperialist Competitive Algorithm (ICA) for optimization of multipass turning process. This algorithm is inspired by competition mechanism among imperialists and coloni...
متن کاملA Novel Optimization Approach Applied to Multi-Pass Turning Process
Optimization of turning process is a non-linear optimization with constrains and it is difficult for the conventional optimization algorithms to solve this problem. The purpose of present study is to demonstrate the potential of Imperialist Competitive Algorithm (ICA) for optimization of multipass turning process. This algorithm is inspired by competition mechanism among imperialists and coloni...
متن کامل